Friday, 24 May 2013

Amazing Space Pictures

Amazing Space Pictures Definition

Source(Google.com.pk)
Space is the boundless three-dimensional extent in which objects and events have relative position and direction.[1] Physical space is often conceived in three linear dimensions, although modern physicists usually consider it, with time, to be part of a boundless four-dimensional continuum known as spacetime. In mathematics, "spaces" are examined with different numbers of dimensions and with different underlying structures. The concept of space is considered to be of fundamental importance to an understanding of the physical universe. However, disagreement continues between philosophers over whether it is itself an entity, a relationship between entities, or part of a conceptual framework.

Debates concerning the nature, essence and the mode of existence of space date back to antiquity; namely, to treatises like the Timaeus of Plato, or Socrates in his reflections on what the Greeks called khora (i.e. "space"), or in the Physics of Aristotle (Book IV, Delta) in the definition of topos (i.e. place), or even in the later "geometrical conception of place" as "space qua extension" in the Discourse on Place (Qawl fi al-Makan) of the 11th century Arab polymath Alhazen.[2] Many of these classical philosophical questions were discussed in the Renaissance and then reformulated in the 17th century, particularly during the early development of classical mechanics. In Isaac Newton's view, space was absolute—in the sense that it existed permanently and independently of whether there were any matter in the space.[3] Other natural philosophers, notably Gottfried Leibniz, thought instead that space was in fact a collection of relations between objects, given by their distance and direction from one another. In the 18th century, the philosopher and theologian George Berkeley attempted to refute the "visibility of spatial depth" in his Essay Towards a New Theory of Vision. Later, the metaphysician Immanuel Kant said neither space nor time can be empirically perceived, they are elements of a systematic framework that humans use to structure all experiences. Kant referred to "space" in his Critique of Pure Reason as being: a subjective "pure a priori form of intuition", hence it is an unavoidable contribution of our human faculties.

In the 19th and 20th centuries mathematicians began to examine non-Euclidean geometries, in which space can be said to be curved, rather than flat. According to Albert Einstein's theory of general relativity, space around gravitational fields deviates from Euclidean space.[4] Experimental tests of general relativity have confirmed that non-Euclidean space provides a better model for the shape of space.
Leibniz and Newton
Gottfried Leibniz

In the seventeenth century, the philosophy of space and time emerged as a central issue in epistemology and metaphysics. At its heart, Gottfried Leibniz, the German philosopher-mathematician, and Isaac Newton, the English physicist-mathematician, set out two opposing theories of what space is. Rather than being an entity that independently exists over and above other matter, Leibniz held that space is no more than the collection of spatial relations between objects in the world: "space is that which results from places taken together".[5] Unoccupied regions are those that could have objects in them, and thus spatial relations with other places. For Leibniz, then, space was an idealised abstraction from the relations between individual entities or their possible locations and therefore could not be continuous but must be discrete.[6] Space could be thought of in a similar way to the relations between family members. Although people in the family are related to one another, the relations do not exist independently of the people.[7] Leibniz argued that space could not exist independently of objects in the world because that implies a difference between two universes exactly alike except for the location of the material world in each universe. But since there would be no observational way of telling these universes apart then, according to the identity of indiscernibles, there would be no real difference between them. According to the principle of sufficient reason, any theory of space that implied that there could be these two possible universes, must therefore be wrong.[8]
Isaac Newton

Einstein
Albert Einstein

In 1905, Albert Einstein published a paper on a special theory of relativity, in which he proposed that space and time be combined into a single construct known as spacetime. In this theory, the speed of light in a vacuum is the same for all observers—which has the result that two events that appear simultaneous to one particular observer will not be simultaneous to another observer if the observers are moving with respect to one another. Moreover, an observer will measure a moving clock to tick more slowly than one that is stationary with respect to them; and objects are measured to be shortened in the direction that they are moving with respect to the observer.

Over the following ten years Einstein worked on a general theory of relativity, which is a theory of how gravity interacts with spacetime. Instead of viewing gravity as a force field acting in spacetime, Einstein suggested that it modifies the geometric structure of spacetime itself.[19] According to the general theory, time goes more slowly at places with lower gravitational potentials and rays of light bend in the presence of a gravitational field. Scientists have studied the behaviour of binary pulsars, confirming the predictions of Einstein's theories and non-Euclidean geometry is usually used to describe spacetime.

Amazing Space Pictures

Amazing Space Pictures

Amazing Space Pictures

Amazing Space Pictures

Amazing Space Pictures

Amazing Space Pictures

Amazing Space Pictures

Amazing Space Pictures

Amazing Space Pictures

Amazing Space Pictures

Amazing Space Pictures

Amazing Space Pictures

Amazing Space Pictures

Amazing Space Pictures

Amazing Space Pictures













No comments:

Post a Comment